Skip to main content Skip to Search Box
Summary Article: diamond
from The Columbia Encyclopedia

mineral, one of two crystalline forms of the element carbon (see allotropy), the hardest natural substance known, used as a gem and in industry.

Properties

Diamonds crystallize in the isometric system (see crystal) commonly as transparent to translucent white, colorless, yellow, green, blue, pink, or brown octahedrons (the familiar diamond shape). The extraordinary brilliancy of diamonds after faceting is due to their very high refractive index, which is greater than that of any other naturally occurring gemstone. In addition to the gem varieties there are bort, which is poorly crystallized or of inferior color and in fragmentary condition, and carbonado (black diamond), which is gray to black and opaque, with poor cleavage. Bort and carbonado are used as abrasives, in the cutting of diamonds, and for the cutting heads of rock drills. Diamond abrasives may have been used as early as 2500 B.C. in China.

Natural Occurrence and Processing

Diamonds are found in alluvial (loose earthy material deposited by running water) formations and in volcanic pipes, filled for most of their length with blue ground or kimberlite, an igneous rock consisting largely of serpentine. At the surface the blue ground is weathered to a clay called yellow ground. Diamantiferous (or diamondiferous), or diamond-yielding, earth is mined both by the open-pit method and by underground mining. After being removed to the surface, it is crushed and then concentrated. Sorting is done by passing the concentrated material in a stream of water over greased tables. The diamond, being largely water repellent, sticks to the grease, but the other minerals retain a film of water, which prevents them from adhering to the grease. The diamonds are then removed from the grease, cleaned, and graded for sale.

Sources

The earliest sources of gem diamonds were India and Borneo, where they were found in river alluvium. All famous diamonds of antiquity were Indian diamonds, including the Great Mogul, the Orlov, the Koh-i-noor, and the Regent or Pitt. Other famous diamonds are the Hope (blue), Dresden (green), and Tiffany (yellow). In the early 18th cent., deposits similar to those in India were found in Brazil, mainly of carbonados, though they may have been known as early as 1670. In 1867, a stone found in South Africa was recognized as a diamond. Within a few years, this began a wild search for diamonds, both in river diggings and inland. In 1870–71, dry diggings, including most of the celebrated mines, were discovered. Well-known South African diamond mines are the Dutoitspan, Bultfontein, De Beers, Kimberley, Jagersfontein, and Premier. Russia, Botswana, Congo (Kinshasa), Australia, and South Africa are now the world's major diamond-producing nations; other important countries include Canada, Angola, Namibia, Ghana, and Brazil. The use of diamonds to finance African rebel groups and fuel civil strife led, in 2001 and 2002, to international agreements (the Kimberley Process) designed to certify legitimately mined diamonds, but in 2011 the permitted sale of diamonds from Zimbabwe, where the army has been accused of brutality and human rights violations in diamond mines and diamond revenues support an autocratic government, led to criticism of the certification process.

Synthetic diamonds were successfully produced in 1955; a number of small crystals were manufactured when pure graphite mixed with a catalyst was subjected to pressure of about 1 million lb per sq in. and temperature of the order of 5,000 degrees Fahrenheit (3,000 degrees Celsius). Synthetic diamonds are now extensively used in industry.

The Diamond Cartel

The discoveries of 1870–71 in South Africa led to a great number of prospectors staking out claims and securing the diamonds by open-pit or quarry mining. The damage caused by floods and mudslides, unavoidable when there were so many different claims, was an important factor in the series of amalgamations carried on by Cecil Rhodes and Barnett Barnato. Rhodes brought about the merging of their interests in the De Beers Consolidated Mines, Ltd., which established (1889) an effective monopoly over the diamond industry. Loss of diamonds by theft was reduced through the passage of the so-called I.D.B. (Illicit Diamond Buying) Act, which limited the trade to licensed buyers and imposed penalties for the possession of uncut stones without a license. Thefts were further curtailed by the institution of compounds in which the workers live while employed by the company and which they leave only after being thoroughly searched.

Most of the major diamond producers belong to, or have cooperated with, the De Beers–led marketing cartel, formed to maintain the price of diamonds at a high level. De Beers, under Harry Oppenheimer's leadership (1957–84), maintained its dominant position in the industry by using its numerous worldwide companies to buy up new sources of diamonds and to control distribution of industrial diamonds and production of synthetic ones. In the last decades of the 20th cent., however, De Beers' hold over the unpolished diamond market decreased, and in 2000 the company announced it would end to its policy of controlling diamond prices through hoarding and shift its focus to increasing sales.

Bibliography
  • See Argenzio, V., Diamonds Eternal (1974).
  • Wilson, A. N., Diamonds: From Birth to Eternity (1982).
  • Newman, R., Diamonds: Fascinating Facts (1990).
  • Kanfer, S., The Last Empire (1993).
The Columbia Encyclopedia, © Columbia University Press 2017

Related Articles


Full text Article Diamond
Guide to Gems

Diamond is the hardest natural substance and the most valued gemstone. The name comes from the Greek word adamas meaning ‘invincible’, and...

Full text Article Diamond
Guide to Minerals, Rocks and Fossils

C Crystal system Cubic. Habit Commonly occurs as octahedral crystals frequently of flattened habit; more rarely as cubes, often with...

Full text Article diamond
Philip's Encyclopedia

Crystalline form of carbon (C). The hardest natural substance known, it is found in kimberlite pipes and alluvial deposits. Appearance varies...

See more from Credo