Skip to main content Skip to Search Box

Definition: chemical bond from Philip's Encyclopedia

Mechanism that holds together atoms to form molecules. There are several types which arise either from the attraction of unlike charges, or from the formation of stable configurations through electron-sharing. The number of bonds an atom can form is governed by valence. The main types are ionic, covalent, metallic and hydrogen bonds.

Summary Article: chemical bond from The Columbia Encyclopedia

mechanism whereby atoms combine to form molecules. There is a chemical bond between two atoms or groups of atoms when the forces acting between them are strong enough to lead to the formation of an aggregate with sufficient stability to be regarded as an independent species. The number of bonds an atom forms corresponds to its valence. The amount of energy required to break a bond and produce neutral atoms is called the bond energy. All bonds arise from the attraction of unlike charges according to Coulomb's law; however, depending on the atoms involved, this force manifests itself in quite different ways. The principal types of chemical bond are the ionic, covalent, metallic, and hydrogen bonds. The ionic and covalent bonds are idealized cases, however; most bonds are of an intermediate type.

The Ionic Bond

The ionic bond results from the attraction of oppositely charged ions. The atoms of metallic elements, e.g., those of sodium, lose their outer electrons easily, while the atoms of nonmetals, e.g., those of chlorine, tend to gain electrons. The highly stable ions that result retain their individual structures as they approach one another to form a stable molecule or crystal. In an ionic crystal like sodium chloride, no discrete diatomic molecules exist; rather, the crystal is composed of independent Na+ and Cl- ions, each of which is attracted to neighboring ions of the opposite charge. Thus the entire crystal is a single giant molecule.

The Covalent Bond

A single covalent bond is created when two atoms share a pair of electrons. There is no net charge on either atom; the attractive force is produced by interaction of the electron pair with the nuclei of both atoms. If the atoms share more than two electrons, double and triple bonds are formed, because each shared pair produces its own bond. By sharing their electrons, both atoms are able to achieve a highly stable electron configuration corresponding to that of an inert gas. For example, in methane (CH4), carbon shares an electron pair with each hydrogen atom; the total number of electrons shared by carbon is eight, which corresponds to the number of electrons in the outer shell of neon; each hydrogen shares two electrons, which corresponds to the electron configuration of helium.

In most covalent bonds, each atom contributes one electron to the shared pair. In certain cases, however, both electrons come from the same atom. As a result, the bond has a partly ionic character and is called a coordinate link. Actually, the only purely covalent bond is that between two identical atoms.

Covalent bonds are of particular importance in organic chemistry because of the ability of the carbon atom to form four covalent bonds. These bonds are oriented in definite directions in space, giving rise to the complex geometry of organic molecules. If all four bonds are single, as in methane, the shape of the molecule is that of a tetrahedron. The importance of shared electron pairs was first realized by the American chemist G. N. Lewis (1916), who pointed out that very few stable molecules exist in which the total number of electrons is odd. His octet rule allows chemists to predict the most probable bond structure and charge distribution for molecules and ions. With the advent of quantum mechanics, it was realized that the electrons in a shared pair must have opposite spin, as required by the Pauli exclusion principle. The molecular orbital theory was developed to predict the exact distribution of the electron density in various molecular structures. The American chemist Linus Pauling introduced the concept of resonance to explain how stability is achieved when more than one reasonable molecular structure is possible: the actual molecule is a coherent mixture of the two structures.

Metallic and Hydrogen Bonds

Unlike the ionic and covalent bonds, which are found in a great variety of molecules, the metallic and hydrogen bonds are highly specialized. The metallic bond is responsible for the crystalline structure of pure metals. This bond cannot be ionic because all the atoms are identical, nor can it be covalent, in the ordinary sense, because there are too few valence electrons to be shared in pairs among neighboring atoms. Instead, the valence electrons are shared collectively by all the atoms in the crystal. The electrons behave like a free gas moving within the lattice of fixed, positive ionic cores. The extreme mobility of the electrons in a metal explains its high thermal and electrical conductivity.

Hydrogen bonding is a strong electrostatic attraction between two independent polar molecules, i.e., molecules in which the charges are unevenly distributed, usually containing nitrogen, oxygen, or fluorine. These elements have strong electron-attracting power, and the hydrogen atom serves as a bridge between them. The hydrogen bond, which plays an important role in molecular biology, is much weaker than the ionic or covalent bonds. It is responsible for the structure of ice.

  • See L. Pauling, The Nature of the Chemical Bond (3d ed. 1960).
  • A. L. Companion, Chemical Bonding (2d ed. 1979).
The Columbia Encyclopedia, © Columbia University Press 2017

Related Credo Articles

Full text Article chemical bond
The Macmillan Encyclopedia

The force that holds the atoms together in a molecule or the ions together in a crystalline solid. In general, atoms combine to form molecules...

Full text Article chemical bond
Philip's Encyclopedia

Mechanism that holds together atoms to form molecules. There are several types which arise either from the attraction of unlike charges, or from...

Full text Article bond, chemical
Hawley's Condensed Chemical Dictionary

An attractive force between atoms strong enough to permit the combined aggregate to function as a unit. A more exact definition is not possible beca

See more from Credo